A relation between one-point and multi-point Seshadri constants

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Inequality between Multipoint Seshadri Constants

Let X be a projective variety of dimension n and L be a nef divisor on X. Denote by ǫd(r;X,L) the d-dimensional Seshadri constant of r very general points in X. We prove that ǫd(rs;X,L) ≥ ǫd(r;X,L) · ǫd(s;P n,OPn (1)) for r, s ≥ 1.

متن کامل

Remarks on Seshadri Constants

Given a smooth complex projective variety X and an ample line bundle L on X. Fix a point x ∈ X. We consider the question, are there conditions which guarantee the maxima of the Seshadri constant of L at x, i.e ε(L, x) = n √ L? We give a partial answer for surfaces and find examples where the answer to our question is negative. If (X,Θ) is a general principal polarized abelian surface, then ε(Θ,...

متن کامل

Bounds for Seshadri Constants

Introduction In this paper we present an alternative approach to the boundedness of Seshadri constants of nef and big line bundles at a general point of a complex–projective variety. Seshadri constants ε(L, x), which have been introduced by Demailly [De92], measure the local positivity of a nef line bundle L at a point x ∈ X of a complex–projective variety X, and can be defined as ε(L, x) := in...

متن کامل

Almost Multi-Cubic Mappings and a Fixed Point Application

The aim of this paper is to introduce $n$-variables mappings which are cubic in each variable and to apply a fixed point theorem for the Hyers-Ulam stability of such mapping in non-Archimedean normed spaces. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes are presented.

متن کامل

Seshadri Constants via Lelong Numbers

One of Demailly’s characterizations of Seshadri constants on ample line bundles works with Lelong numbers of certain positive singular hermitian metrics. In this note sections of multiples of the line bundle are used to produce such metrics and then to deduce another formula for Seshadri constants. It is applied to compute Seshadri constants on blown up products of curves, to disprove a conject...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2003.10.009